Gevey mathematics and geometry
Gevey speakers, unlike most other peoples, count in base 10. Information on forming and managing numbers can be found on the numbers in Gevey webpage. This webpage offers a very brief introduction to the Gevey mathematical and geometrical lexicon.
Gevey has very few naturally occuring mathematical or geometrical words, which means much of the technical lexicon has been adapted from the common language, or developed by philosophical mathematicians - which probably accounts for the long-windedness of many of the terms and phrases used. For many of these, shorter versions are available for general non-technical use.
Numbers in Gevey are grammatical modifiers, and thus need an object to act on. If the object is not known, then by convention the pronoun 'ko' is used: ko zerue, ko ónue, kom drjasue, kom besue, kom vilue, koc finue, etc. Whenever possible, mathematical phrases are cast in the nominative case.
In Gevey, mathematics is known as 'sieftumu' (the land of numbers), while geometry is known as 'rovaoptumu' (the land of shapes).
Mathematical operations
When adding or subtracting one (or more) numbers from another, the object only needs to be mentioned at the start of the phrase, and for the result.
- For addition, use the phrase [number] ûin [number] sekaso [result]
- For subtraction, use the phrase [number] âen [number] sekaso [result]
The verb 'sekan' (become) will change according to the number of the first object.
- 1 + 1 = 2 --- ko ónue ûin ónue sekaso kom drjasue
- 15 + 91 = 106 --- koc ókifinue ûin ígjkihonue sekasoe koc ótci he dizue
- 7 - 2 = 5 --- koc áderue âen drjasue sekasoe koc finue
- 746 - 480 = 266 --- koc ádetci he viljkidizue âen viljtci he éspeki sekasoe kox bestci he dizgidizue
- 25 + 38 - 20 = 43 --- kox drjakifinue ûim beskispenue âen drjaki sekasoe kox viljkibesue
Before moving on to multiplication and division, the student needs to understand the Gevey speaker's way of considering factors, divisors and products.
In the sum 5 x 9 = 45, the product 45 is considered to be the child (basatu) of the two parent (nonju) factors that joined together to create it. Similarly, in the sum 45 / 9 = 5 one of the nonjum is compared to the basatu to find its spouse (voenu).
- For multiplication, use the phrase nonjum [factor] ûin [factor] bekasyu basatu [product]
- For division, use the phrase basatu [product] âen nonju [divisor] bekasyu voenu [result]
In both cases, the verb 'bekan' (remain) is used.
- 2 x 3 = 6 --- nonjum drjasue ûin besue bekasyu basatu dizue
- 9 x 5 = 45 --- nonjum ínue ûin finue bekasyu basatu viljkifinue
- 45 / 9 = 5 --- basatu viljkifinue âen nonju ínue bekasyu voenu finue
- 39872 / 56 = 712 --- basatu besue miljue ígjkispetci ádekidrjasue âen nonju figjkidizue bekasyu voenu ádetci ha ókidrjasue
For the simplified versions of these phrases:
- addition: ko [n] ûin [n] sekaso [n]
- subtraction: ko [n] âen [n] sekaso [n]
- multiplication: ko [n] ûin [n] bekaso [n]
- division: ko [n] âen [n] bekaso [n]
- 15 + 91 = 106 --- ko ókifinue ûin ígjkihonue sekaso ótci he dizue
- 746 - 480 = 266 --- ko ádetci he viljkidizue âen viljtci he éspeki sekaso bestci he dizgidizue
- 2 x 3 = 6 --- ko drjasue ûin besue bekaso dizue
- 45 / 9 = 5 --- ko viljkifinue âen ínue bekaso finue
Finally, the square of a number is known as the first child (basatu ónixu), while the cube of a number is known as the second child (basatu drjasixu) and so on. Similarly, the square root of a number is known as the first parent (nonju ónixu), the cube root of a number is known as the second parent (nonju drjasixu), etc.
Geometrical shapes
Most shapes have been given names in accordance with their mathematical properties: number of sides, lengths of sides, etc. A few shapes have more common names. Key words for these descriptions are:
- rovaopu (shape)
- froutcu (line)
- togrju (side)
- syaf- (good, equal)
- wjibl- (reasonable, similar)
- zwjeg- (poor, unequal)
The geometrical descriptions are based on fairly literal observations of the shapes themselves. For two dimensional shapes, the following phrase is utilised:
- rovaopu ûin froutcu [number] [syafixu|wjiblixu|zwjegixu]
- literally, "shape with X [equal|similar|unequal] lines"
From this, we get the following phrases. The simplified versions of these phrases, and more common names, are shown in brackets:
- circle - rovaopu ûin froutcu ónue syafixu (froutconu, vyenu)
- oval - rovaopu ûin froutcu ónue wjiblixu (froutconu wjiblixu, gyolsnju)
- ellipse - rovaopu ûin froutcu ónue zwjegixu (frouconu zwjegixu, rovaopu baftixu)
- lens - rovaopu ûin froutcum drjasue syafixum (froudxedrjasu)
- lune, crescent - rovaopu ûin froutcum drjasue zwjegixum (froudxedrjasu zwjegixu, rovaopu tcaswixu)
- equilateral triangle - rovaopu ûin froutcum besue syafixum (froudxebesu, netju wjoolixu)
- rightangled triangle - rovaopu ûin froutcum besue wjiblixum (froudxebesu wjiblixu, netju úestjixu)
- isosoles triangle - rovaopu ûin froutcum besue zwjegixum (froudxebesu zwjegixu, netju caawjixu)
- square - rovaopu ûin froutcum vilue syafixum (froudxevilu, dxetju tcuegrjixu)
- rectangle - rovaopu ûin froutcum vilue wjiblixum (froudxevilu wjiblixu, rovaopu dxetjixu)
- rhomboid - rovaopu ûin froutcum vilue zwjegixum (froudxevilu zwjegixu)
- pentagon - rovaopu ûin froutcuc finue syafixuc (froutcefinu)
- hexagon - rovaopu ûin froutcux dizue syafixuc (froudxedizu)
- octagon - rovaopu ûin froutcuc éspenue syafixuc (froutcespenu)
- decagon - rovaopu ûin froutcuc óki syafixuc (froutcoku)
The key phrase for 3D objects is similar to that for 2D objects:
- rovaopu ûin togru [number] [syafixu|wjiblixu|zwjegixu]
- literally, "shape with X [equal|similar|unequal] sides"
This generates the following phrases. Again, the simplified versions of these phrases are shown in brackets:
- sphere - rovaopu ûin togru ónue syafixu (togronu, laebu)
- ovoid, egg - rovaopu ûin togru ónue wjiblixu (togronu wjiblixu, laebu wjiblixu, baftu)
- torus - rovaopu ûin togru ónue zwjegixu (togronu zwjegixu)
- sheet - rovaopu ûin togrum drjasue syafixum (togredrjasu)
- lens - rovaopu ûin togrum drjasue wjiblixum (togredrjasu wjiblixu)
- cone - rovaopu ûin togrum drjasue zwjegixum âl ctreeqixum (togredrjasu ctreeqixu, rovaopu üendxu úestjixu)
- dome - rovaopu ûin togrum drjasue zwjegixum (togredrjasu zwjegixu, rovaopu öcantixu)
- cylinder - rovaopu ûin togrum besue zwjegixum (togrebesu, rovaopu ladjixu)
- pyramid (triangular base) - rovaopu ûin togrum vilue syafixum (togrevilu)
- pyramid (square base) - rovaopu ûin togruc finue wjiblixuc (togrefinu)
- cube - rovaopu ûin togrux dizue syafixuc (togredizu, rovaopu miftixu)
- plank - rovaopu ûin togrux dizue zwjegixuc (togredizu zwjegixu, rovaopu syifmixu)
Constants and angles
The Gevey term for the relationship between a circle's diameter and its circumference - π - is sievyo Qnjeeden (Khnede's number)
Gevey mathematicians choose not to follow the convention of dividing a circle into 360 equal degrees. Instead, circles are divided into 'netju' (wedges) as follows:
- a circle consists of 6 netjsyafuc (good wedges) - 1°s = 60°
- a circle consists of 4 netjfoedljum (thick wedges) - 1°f = 90°
- a circle consists of 12 netjhaluc (thin wedges) - 1°h = 30°
- a circle consists of 10 netjkrjeetuc (reasonable wedges) - 1°k = 36°
- a circle consists of 600 netjnisuc (small wedges) - 1° = 0.6°